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Summary 

The similarity solutions for free convection on a vertical plate when the (non-dimensional) plate temperature is 
x x and when the (non-dimensional) surface heat flux is - x  ~ are considered. Solutions valid for ~ >> 1 and 
# >> 1 are obtained. Further, for the first problem it is shown that there is a value h0, dependent on the Prandtl 
number, such that solutions of the similarity equations are possible only for A > ~0, and for the second problem 
that solutions are possible only for /~ > -  1 (for all Prandtl numbers). In both cases the solutions becomes 
singular as h ---, 2~0 and as/~ ---, - 1, and the natures of these singularities are discussed. 

1. Introduction 

The problem of obtaining similarity solutions for the free convection boundary-layer 
equations governing the flow on a heated vertical plate was first considered by Sparrow 
and Gregg [1]. They showed that when the (non-dimensional) plate temperature Tw was 
given by T w = xX(A a constant) the governing partial differential equations could be 
reduced to a pair of coupled ordinary differential equations by a suitable change of 
variables. They gave results for values of A between - 0 . 8  and 3.0. The case A = 0 
corresponds to a uniform plate temperature and has been treated separately by Pohlhau- 
sen [2] and Ostrach [3]. As well as being of interest in themselves [4,5], these similarity 
equations arise as the leading-order solutions in series expansions in problems where other 
effects are present, for example in mixed convection [6,7,8,9,10,11] and in magnetohydro- 
dynamic free convection [12,13]. Consequently it is important to have a full understanding 
of their solution. 

The purpose of this paper is twofold. We first obtain a solution when A >> 1; here the 
leading-order term is given by the similarity solution for a plate temperature T w = e m x  ( m  

a constant) given by [1]. We then show, by a numerical integration of the equations, there 
is a value of ~ = X 0 (say) such that a solution is possible only for ~ > ~0, where ~0 
depends on the Prandl number Pr" The solution becomes singular as ~ ~ ~0, and we 
describe the nature of this singularity. 

We then go on to consider the case when the plate is heated in a prescribed way. Again 
a similarity transformation is possible when the normal gradient of temperature on the 
plate (OT /~y )y=  o = - - x  ~ (/x a constant). The case when # = 0 has been given by Sparrow 
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and Gregg [14]. A solution for/~ >> 1 is obtained, analogous to the prescribed temperature 
case. Again there is a lower bound on # for solutions to the similarity equations to exist. 
However, we show by a simple argument that this bound is now independent of Pr" In fact 
we find we need/~ > - 1 with the solution becoming singular as / t  ~ - 1. 

The scheme of the paper is as follows. We describe in some detail the solution for the 
prescribed temperature case. We then sketch briefly the corresponding solution for the 
prescribed heating case, highlighting, where necessary, the differences between the two 
cases. 

2. Prescribed plate temperature 

The (non-dimensional) equations for the boundary-layer flow on a heated vertical plate 
are 

au Ov (1) 

au au 02u 
U~x + V-~y = T +  - - ,  (2) ay 2 

aT ~T 1 aZT 
U'~x + O-~y = Pr Oy 2 '  (3) 

where x measures distance along the plate and y normal to it; u and v are the velocity 
components in the x and y directions respectively and T is the temperature difference. 
The boundary conditions for this case are 

u = v = O ,  T =  T w = x  x o n y = 0 ,  (4) 
u ~ 0 ,  T - - , 0  as y ---, ~ .  

The systems (1)-(4) can be reduced to similarity form by the transformation 

= x3+X/Of(~l), T= xXO(71), ~1 =Y xx-'/4 (5) 

where ~ is the stream function defined in the usual way. Using (5), equations (1)-(3) 
become 

f , , ,  + 0 + ( 3 + ~ \  ,, / 1 +  ~ ) f , 2  : ) f f  -~----.-~-- = 0 ,  (6) 

!a,,  
Pr + ( - ~ ) f O ' - - X f ' O = O  (7) 

with (4) giving the boundary conditions 

f= f '=O,  0=1 on ~ = 0 ,  (8) 
f ' ~ O ,  0 ~ 0  as ~! ~ oo 



191 

(here dashes denote differentiation with respect to ,/). Equations (6) and (7) are essentially 
the equations given in [1]. 

To find a solution of (6), (7) and (8) valid when X>> 1, we make the further 
transformation 

f =  X-3/4F(7/), 0 = 0(7/), 7/= }d/%l. 

On substituting (9) into (6) and (7) we obtain 

F ' "  + 0 + ¼  1 + ~  F F " - ½  1+~-  = 0 ,  

o .=o 

(9) 

(10) 

(11) 

(dashes now denote differentiation with respect to 7/). The boundary conditions to be 
satisfied are still given by (8). We look for a solution of (10) and (11) by expanding F and 
0 in the form 

F =  Fo + X-IF~ + . . . .  

0 = 0o + X-~0] + . . . .  
(12) 

F o and 0 o satisfy the equations 

1 ~ L"tt 1 ~,¢2 
Fo'" + 0 o + a , o , o  - ~ ,  o = 0 ,  

1 
- -  ¢ l  1 r prO; + FoO; - F;Oo = O, 

(13) 

(14) 

with boundary conditions 

Fo = F~ = 0, Oo=l  on 7/= 0, 

F~ --* 0, 0 o ~ 0  as 7 / ~  oo. 
(15) 

Equations (13) and (14) are the equations for the case when T w = e rex, [1]. The 
equations for the higher-order terms in (12) are all linear and can be solved numerically in 
a straightforward way once the solution of (13) and (14) is known. We find, for Pr = 1, 
that 

d 2 f  = X - 1 / 4 ( 0 , 8 5 1 5  _ 0.1579X -] + . . .  ), 
dT/2 ]o 

(d0)d__~ o = - ~ 1 / 4 ( 0 " 5 8 2 3 - 0 " 0 0 0 9 2 t - 1 + ' " ) "  

(16) 

Values of (d2f/dT/2)o and (d0/d*l)0 obtained by solving equations (6) and (7) numerically 
are compared with their values calculated using (16) in Table 1. We can see that the two 
are in good agreement even at modest values of h. At ~ = 4, (d2f/d,/2)0 is 0.5% in error, 
while the error in (dO/d,/)  0 is only 0.2%. 
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Table 1. Values of f"(O) and 0'(0) obtained from (16) and by a numerical integration of equations (6) and (7) 

f"(O) 0'(0) 

Exact Series (16) Exact Series (16) 

1.00 0.7395 0.6936 -0.5951 -0.5814 
1.25 0.7155 0.6858 -0.6251 -0.6150 
1.50 0.6949 0.6743 -0.6516 -0.6438 
1.75 0.6769 0.6619 -0.6754 -0.6692 
2.00 0.6611 0.6496 -0.6970 -0.6920 
2.25 0.6469 0.6379 -0.7169 -0.7132 
2.50 0.6341 0.6269 -0.7354 -0.7318 
2.75 0.6225 0.6166 -0.7526 -0.7495 
3.00 0.6119 0.6070 - 0.7687 -0.7660 
3.25 0.6021 0.5980 -0.7839 -0.7815 
3.50 0.5931 0.5895 -0.7982 -0.7961 
3.75 0.5847 0.5816 - 0.8119 -0.8100 
4.00 0.5768 0.5742 -0.8249 -0.8232 

Nex t  cons ider  the behav iour  of  the solut ion for X < 0. As  ~ is decreased  f rom ~ = 0, 
the thickness  of  the b o u n d a r y  layer  (in terms of  ,7) decreases,  while (d 2 f /d~/2)0 increases. 
(d0 /d~ / )0  changes  sign ( f rom negat ive to posi t ive)  at  7~ = - 3 / 5 .  These  effects become 
more  p r o n o u n c e d  as X is decreased  fur ther  and  the solut ion appears  to be becoming  
s ingular  as X approaches  a value )% (say). This  can be  clear ly seen in F igure  1, where 
f " ( 0 )  and  0'(0) are p lo t t ed  agains t  7~, and  also in F igure  2 where t empera tu re  profi les  0 (~ )  
are  given for  var ious  )~ close to )~ 0- 

To ob ta in  the solut ion near  this s ingular i ty  we pu t  )~ = ~0 + ~ where  c << 1 and  then 
make  the t r ans fo rma t ion  

f = C-1/4d, b ( a ) ,  O=~.-1H(z), z = •-1/4' 0 . (17) 

The  reason for this t r ans fo rma t ion  will become  a p p a r e n t  later.  Subs t i tu t ing  (17) in to  
equat ions  (6) and  (7) gives 

~,,, + / - /+  ¼(3 + x0 + , ) ~ , , , , -  ½(1 + x0 +,)~,2  = 0, (18) 

1 
- - H "  + ¼(3 + )% + c) q~H' - ( h  0 + c ) ~ ' H  = 0, (19) 
Pr 

with (8) giving the b o u n d a r y  condi t ions  

q , = q ¢ = 0 ,  H = c  o n z = 0 ,  (20) 
~,' --+ 0, H - - + 0  as z - +  ~ 

(dashes  denote  d i f fe rent ia t ion  with respect  to z). The forms of  (18), (19) and  (20) suggest 
an expans ion  in the form 

= q~o + c~, + . . . .  
H = H o + ~H, + . . . .  (21) 
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Figure 1. 0'(0) and f " (0 )  plotted against ~, for h near ~.0 (the values given by (33) are shown by the broken 
lines). 

The equations for leading-order terms are 

q~o'" + H0 + ~-(3 + Xo) q~oq~ 6' - ½(1 + Xo) , '  ~ = 0, (22) 

1 
~-~H;' + ~(3 + ~t0),oH; - 2 to~H 0 = 0, (23) 

with boundary conditions 

,~o = q,~ = 0 on z = O ,  
q~ ~ 0, H o ~ 0  as z ~ o¢. (24) 

The homogeneous system given by (22)-(24) is an eigenvalue problem for ~o. This 
problem has arisen previously but in a different context, [15], (though the equations given 
in [15] are different to (22) and (23) they can be transformed into them by a simple change 
of variables). We find that Xo is dependent on Pr and values of Xo for various Pr are given 
in Table 2 (in particular we find, for Pr = 1, that $o = -0.9790). 
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Figure 2. Temperature profiles 0 plotted against ~ for 2, = -0 .8 ,  ~ = - 0 . %  ~ = -0 .95  and Pr =1.  

The solution is not unique, and we fix our solution by taking q,~'(0)= 1. Values of the 
corresponding H~(0) are also given in Table 2. The actual solution will, in general, not 
have q,~'(0) = 1, but will have q,~'(0)= C (say) for some constant C to be determined. The 
general leading-order solution (q'o, Ho) can be then obtained from our basic solution 
(q~o, Ho) by writing 

~0 = C 1 / 3 ~ o ,  n o  = C 4 / 3 H o ,  ~" = C 1 / 3 2 .  ( 2 5 )  

The value of C is determined by the solution of the equations of O(e), which we now 
consider. These are 

3("+/41+I-(3 - - '  . . . . .  + Xo)(q~O'~l + q~lq'o ) - (1 + X0)q~0q~ , 

= C 4 / 3 t ! ~ t 2 _  1~ -~tt~ 
~2,eo ~ 0 ~ 0  ], (26) 

1 
E/-/ ; '  + ¼(3 + X0)(,~oH; + ~,,/-/~) - X o ( ~ H  , + , ; H o )  

= C4/3(d  ) o 1 -  --,, zq ,oH6) ,  ( 27 )  



Table 2. Values of the eigenvalues ~o (and corresponding H6(0 ) of equations (22) 
P~ 
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and (23) for various values of 

Pr X0 H6(0) 

0.2 - 1.1690 0.3044 
0.4 - 1.0606 0.4747 
0.6 - 1.0204 0.5930 
0.7 - 1.0070 0.6433 
0.8 - 0.9960 0.6895 
1.0 - 0.9790 0.7729 
1 . 2  - 0.9664 0.8476 
1 . 4  - 0.9566 0.9160 
1 . 6  - 0.9487 0.9794 
1 . 8  - 0.9422 1.0391 
2.0 - 0.9368 1.0955 
2.5 - 0.9263 1.2259 
3.0 - 0.9188 1.3448 
4.0 - 0.9086 1.5588 
5.0 - 0.9019 1.7501 
6.0 - 0.8971 1.9277 
8.0 - 0.8907 2.2492 

10.0 - 0.8865 2.5403 

with b o u n d a r y  condi t ions  

~ l = g ~ = 0 ,  H 1 = 1  o n ~ . = 0 ,  (28) 

~ ---, 0, H i - ' 0  as ~. --, oo. 

Here we have applied the t ransformat ion  (25) and  wri t ten t~l = C - 1 ~ 1 .  
TO solve equat ions  (26) and  (27) numer ica l ly  we construct  four separate solutions, 

namely  two complementa ry  funct ions  (@a, Ha) and  (~b, Hb) (with ~ " ( 0 ) - - 1 ,  HI , (0)= 0 
and  ~ ' ( 0 )  = 0, HI(0  ) = 1) and  two part icular  integrals ( ~ ,  H~) (which is a solut ion of (26) 
and  (27) with the r ight-hand sides pu t  to zero bu t  with ~ ' ( 0 ) =  0, H e ( 0 ) =  1 and  
H ' (0 )  = 0) and  (~d, Hal) (which is a solut ion of the full equat ions  with C 4/3 replaced by 1 
and  ff~'(0) -- Hd(O ) = H~(0) = 0). The complete  solut ion is then 

~1 = Ol~a "{- B~b + ~bc "1- C4/3~d, 

n l -~- orB a + f l n  b+  n c+  C4/3nd . 
(29) 

As ~ ~ oo, we have, f rom (26) and  (27), that H, ~ A, and  ¢~ - -A i~ .  + B i (i = a, b, c, d ) ,  
where the A~ and  B; are constants .  So to satisfy (28) we must  chose ct and  fl so that  

otA a + flh# + A c + C4/3Ad = 0 ,  

orB,, + fiB b + Bc + C4/3nd = O. 
(30) 

Now, equat ions  (26) and  (27) possess a complementa ry  func t ion  ( ~ ,  H~'), where ~ = ~ 6  
+ @o, H* = ~H6 + 4 H  0, which satisfies the homogeneous  b o u n d a r y  condi t ions  ~ '  = ~*~ = 
H~' = 0 on ~ = 0, ~*~ ~ 0, H f  ~ 0 as ~ ~ oo. This, in turn,  implies that the equat ions  
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aA a + ~ A  b = 0, t]tB a -.[- f iB b = 0 must have non-trivial solutions, and, in particular, 

AaB b - AbB a = O. (31) 

Hence equations (30) cannot be solved for a and fl, and are, in fact, a pair of equations 
which determine C. We find, after a little manipulation, and using (31), that 

C 4 / 3  _ A b B c  -- AcB b 
-- A d B b  _ A b B d .  (32) 

From numerical integrations with Pr = 1, we find that C = 0.31943. 
We can now see why the transformation (17) was made. Any other transformation 

would lead us to have equations with either //1(0)= 0 with the same terms on the 
right-hand sides of (26) and (27) or//1(0) = 1 and with zero on the right-hand sides at the 
first perturbation from leading order. The solution would then require only three of the 
four integrations described above, namely (g'a, Ha), (d~b' l i b )  and either (~b,, He) or 
((~d, lid)" Consequently there would be only three terms in the equations corresponding to 
(30) required to satisfy the outer boundary conditions. Then because of the existence of 
the complementary function (~ ' ,  H~) (and, in particular (31)) these could not be solved. 
The only way out of this difficulty is to make transformation (17) so that both the 
boundary condition on H and the perturbation from ~0 contribute to the O(c) equations. 
This in turn fixes the value of C. 

Finally, we have, for Pr ---- 1, 

d2 f )  = C ( X - ~ o )  -3 /4-}-  . . . .  

d~ 2 o 

)o = 0.7729C(~ - X o) - 5/4 + . . .  

(33) 

as X --, ~0- Values of (d2f/d,/2) 0 and (d0/d*/)0 as given by (33) are also shown in Figure 
1 (by the broken hnes) and confirm the above theory. 

3. Prescribed plate heating 

Equations (1)-(3) also reduce to similarity form when the normal gradient of temperature 
on the plate is prescribed by (aT/~y)y= o = - x  ~ (# a constant). To do this we put 

= X4+#/SX(~) , T =  x l + 4 ~ / S g ( ~ ) ,  ~ = y x  ~-1/5. (34) 

Equations (1)-(3) give 

x . g *  ) x x  - x '2 - -  o ,  ( 3 5 )  

~gl ,, +(  ~ _ ) x g , _ ( 1 5 4 #  )x ,g=O,  (36) 
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Table 3. Values of X"(0) and g(0) obtained from (38) and by a numerical integration of equations (35) and (36) 

~, X'(0) g(O) 

Exact Series (38) Exact Series (38) 

1.00 1.0097 0.8621 1.5148 1.5335 
1.25 0.9597 0.8663 1.4671 1.4815 
1.50 0.9174 0.8536 1.4268 1.4380 
1.75 0.8809 0.8350 1.3920 1.4010 
2.00 0.8491 0.8146 1.3617 1.3690 
2.25 0.8209 0.7942 1.3347 1.3408 
2.50 0.7957 0.7746 1.3106 1.3157 
2.75 0.7729 0.7559 1.2897 1.2932 
3.00 0.7524 0.7384 1.2699 1.2728 
3.25 0.7336 0.7219 1.2517 1.2541 
3.50 0.7164 0.7065 1.2349 1.2370 
3.75 0.7005 0.6921 1.2194 1.2212 
4.00 0.6858 0.6785 1.2050 1.2065 
4.25 0.6721 0.6657 1.1915 1.1929 
4.50 0.6594 0.6537 1.1789 1.1801 
4.75 0.6474 0.6424 1.1670 1.1680 
5.00 0.6361 0.6317 1.1558 1.1567 

with bounda ry  condit ions 

X = X ' = 0 ,  g ' = - I  on  ~ = 0 ,  (37) 
X' --+ 0, g - -+0  as ~ --+ oo. 

(now dashes denote  differentiation with respect to ~). The case with /, = 0 was given by 
[141. 

A solution valid for/* >> 1 can be obtained by  first put t ing X = /* -4 /52 ,  g = / , - 1 / s g  and 
=/*l/s~ and  then looking for a solution of  the resulting equations in descending powers 

o f / , .  The process is straightforward and follows closely the prescribed temperature case. 
Again  the leading-order equations correspond to the similarity solution with the pre- 
scribed heat flux ( aT /~y )y=  0 = - e  rex. We find, for Pr = 1 that 

X"(0)  = /*-2 /5(1 .2878 - 0.4257/* -1 + . . .  ), (381 

g(0)  = /*-1 /5(1 .6116 - 0.0780/* - t  + . . .  ). 

Values of  X"(0) and g(0) obtained f rom (38) are given in Table  3, together with their 
values obtained f rom a numerical  integration of  equat ions (35) and (36). As before, the 
two sets of  values are in good agreement  even for modest  values of/*. 

The  situation for/* < 0 is slightly different to the prescribed temperature case. Again,  as 
/* is decreased f rom /* = 0, the thickness of  the layer decreases and bo th  X"(0) and g(0) 
increase, and appear  to approach  a singularity as/*--+ - 1 .  This can be seen in Figure 3 
where graphs of  X"(0) and g(0) are plot ted against/*. 

We can show directly that equat ions (35) and (36) cannot  have a solution when 
/* ~< - 1. By integrating equat ion (36) once, and applying (37) we can show that  

Pr(1 + / * ) / ' ° ° x ' g d ~  = 1. (39) 
ao 
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Figure 3. g(O) and X"(0) plotted against # for/L near - 1  (the values given by (51) are shown by the broken 
lines). 

Clear ly  (39) shows that  there can  be  no  solut ion in which X' > 0 and  g > 0 for  all ~" when 
/x < - 1 .  A l so  we can  show that  equa t ions  (35) and  (36) canno t  have a so lu t ion  when 
/t = - 1. For ,  wi th /~  = - 1, equa t ion  (36) can  be  in tegra ted  once to give 

g '  + ~ P r x g  = A (40) 

where  A is a cons tant .  Clear ly  A canno t  be chosen to be  c ompa t ib l e  wi th  the b o u n d a r y  
cond i t ions  on  bo th  ~ = 0 and  as ~ -o oo. 

To discuss the na tu re  of  the s ingular i ty  near /~ = - 1, we pu t /~  = - 1 + 8, where  ~ << 1, 
a n d  then m a k e  the t r ans fo rma t ion  

X = 8 - 1 / 5 X ,  g = ~5-4/5G, T = 8-1/5~ ". (41) 

As  before  this t r ans fo rma t ion  is mo t iva t ed  b y  the fact  that  we require  the p e r t u r b a t i o n  of  
f rom # = - 1 and  that  ar is ing f rom the b o u n d a r y  cond i t ion  on g to bo th  con t r ibu te  to 

the  equat ions  for the first  pe r t u rba t i on  f rom lead ing  order .  
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Equation (41) is substituted into (35) and (36) and a solution of the resulting equations 
is sought by expanding in the form: 

X =  Xo + ~ X~ + . . . .  
G =  G o +  8G 1 + . . . .  (42) 

The equations for the leading-order terms are 

H 1 y p 2  0~ Xo'" + Go + ~XoX~ - ~ . , 0  = (43) 

1 
-ff G6 + 3 XoGo = 0, (44) 
r r  

subject to the boundary conditions 

X o = X 6 = G 6 = O  on ~-= 0, 
(45) 

X ~ 0 ,  G 0 ~ 0  as ~-~ oo. 

(dashes denote differentiation with respect to T.) To obtain equation (44) we have 
integrated the equation corresponding to (36) once; the boundary conditions on ~, = 0 and 
as z ~ oo are now compatible. 

The solution of (43) and (44) is not unique. To fix a solution we take X6'(0 ) = 1, this 
gives, for P~ = 1, Go(0 ) = 0.7389. The solution with X6'(0)= D can then be obtained from 
this solution by putting 

Xo = D1/3Xo, Cro = D4/3Oo, ~r = D'/3'r. (46) 

The equations for the terms of 0 ( 8 )  are, on putting X1 = D4/3X1, G] = D1/3G1, 

"'l'~m "l- ,..,~'1 'l-Tj(Xog~3 ' t  --I- .ex 1 .ex 0 v  v , ,~)  _ _ S A 0 a  1 2  V t  "~, = ~/3 5 /3  / --2 "Y'2~,5 Ix 0 - -  1"~5 "x0 ~'x0 ] " ~ ' , ~  (47) 

1 - , ,  1 - -  - - t  
~ G 1  + ] (  XoG ~ + X1G 6 + X•G 1 + X~Go) = Ds/3(~X~Go - 5XoGo) , (48) 

with boundary conditions 

X1 = X~ = 0, G ~ = - I  on ~ =  0, (49) 

~ --, 0,  G1 --' 0 as ~- - ,  ~ .  

We can show, by integrating (48) once, that any integration of equations (47) and (48) 
to find a complementary function (with g~(0) = 0) has the property that G 1 ~ 0 as ~ ~ oo. 
However, this is not the case for the particular integrals ( X  c, Go) and ( X  a, Gd), where 
G/(0) = - 1 with the fight-hand sides of (47) and (48) put to zero, and G~(0) = 0 with D 
put to unity in (47) and (48). Both these solutions have the property that G c ~ Ec, G a ~ E a 
as r r ~  oo (for some constants E¢ and Ed). So the combination of complementary 
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functions and particular integrals (as described above in the previous section) will have, as 
~r ---~ oo,  

G, - ,  Ec + z: /3E~.  (50) 

Hence D must be chosen so that D 5/3 = - E , , / E  a. The numerical integrations for Pr = 1 
give D = 1.0899. Then near t~ = - 1, 

X"(0) = O(/~ + 1)-3/5 + . . . .  (51) 

g(0) = 0.7389D4/3(/~ + 1)-4/5 + . . . .  

Values of X"(0) and g(0) obtained from (51) are also shown in Figure 3. 

4. Discussion 

We have shown that for the prescribed plate-temperature problem a solution exists only 
for ~ > 40, with 4 o dependent on Prandl number. Here we consider the value of 2,0 in the 
limiting cases of small and large Pr- 

For  small Pr, as shown by Kuiken [16], there is an inner layer of thickness O(1), in 
which the temperature is constant, governed by a Falkner-Skan-type equation [17,18] with 
Falkner-Skan parameter/3 -- 2(1 + 4 ) / ( 3  + 4) i.e. ~ = (3fl - 2) / (2  - / 3 ) .  Now, from [18], 
solutions of this equation exist only for/3 > -0 .1988 suggesting a value of 4 0 = - 1.1808 
as P~ ---, 0, which is not inconsistent with the values of 40 given in Table 2. 

For large P~, there is, [19], an inner region of thickness O(P71/4) next to the plate, 
governed by the equations 

f " + 0 = o ,  (52)  

o" + ~(3 + x ) f o '  - x f ,0  = 0, (53) 

with boundary conditions 

f (0 )  = f ' ( 0 )  = 0, 0(0) = 1, f " ( o o )  = 0, 0(oo) = 0  (54) 

(after rescaling (6) and (7) as suggested by [19]). The limiting value 2'0 for the existence of 
solutions of (52) and (53) has to be determined numerically, and we find a value of 
4 o = 0.856, again not inconsistent with the values shown in Table 2. 
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